The Fourier Entropy-Influence conjecture holds for a log-density 1 class of cryptographic Boolean functions

نویسندگان

  • Sugata Gangopadhyay
  • Pantelimon Stanica
چکیده

We consider the Fourier Entropy-Influence (FEI) conjecture in the context of cryptographic Boolean functions. We show that the FEI conjecture is true for the functions satisfying the strict avalanche criterion, which forms a subset of asymptotic log–density 1 in the set of all Boolean functions. Further, we prove that the FEI conjecture is satisfied for plateaued Boolean functions, monomial algebraic normal form (with the best involved constant), direct sums, as well as concatenations of Boolean functions. As a simple consequence of these general results we find that each affine equivalence class of quadratic Boolean functions contains at least one function satisfying the FEI conjecture. Further, we propose some “leveled” FEI conjectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composition Theorem for the Fourier Entropy-Influence Conjecture

The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [1] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f ] ≤ C · Inf [f ] holds for every Boolean function f , where H[f ] denotes the spectral entropy of f , Inf [f ] is its total influence, and C > 0 is a universal constant. Despite significant interest in the conjecture it has only bee...

متن کامل

Upper Bounds on Fourier Entropy

Given a function f : {0, 1} n → R, its Fourier Entropy is de ned to be −∑S f̂(S) log f̂(S), where f̂ denotes the Fourier transform of f. This quantity arises in a number of applications, especially in the study of Boolean functions. An outstanding open question is a conjecture of Friedgut and Kalai (1996), called Fourier Entropy In uence (FEI) Conjecture, asserting that the Fourier Entropy of any ...

متن کامل

The Fourier Entropy-Influence Conjecture for Certain Classes of Boolean Functions

In 1996, Friedgut and Kalai made the Fourier Entropy–Influence Conjecture: For every Boolean function f : {−1, 1} → {−1, 1} it holds that H[f̂] ≤ C · I[f ], where H[f̂] is the spectral entropy of f , I[f ] is the total influence of f , and C is a universal constant. In this work we verify the conjecture for symmetric functions. More generally, we verify it for functions with symmetry group Sn1×· ...

متن کامل

Improved Lower Bounds for the Fourier Entropy/Influence Conjecture via Lexicographic Functions

Every Boolean function can be uniquely represented as a multilinear polynomial. The entropy and the total influence are two ways to measure the concentration of its Fourier coefficients, namely the monomial coefficients in this representation: the entropy roughly measures their spread, while the total influence measures their average level. The Fourier Entropy/Influence conjecture of Friedgut a...

متن کامل

The Log-Rank Conjecture for Read- k XOR Functions

The log-rank conjecture states that the deterministic communication complexity of a Boolean function g (denoted by D(g)) is polynomially related to the logarithm of the rank of the communication matrixMg whereMg is the communication matrix defined byMg(x, y) = g(x, y). An XOR function F : {0, 1} × {0, 1} → {0, 1} with respect to f : {0, 1} → {0, 1} is a function defined by F (x, y) = f(x⊕ y). I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014